
Exercises for
Concrete Semantics

Tobias Nipkow Gerwin Klein

January 30, 2023

This document collects together the exercises in the book Concrete Semantics
in extended form. The exercises are described in more detail and with additional
hints. Corresponding templates for solutions are available from the home page
of the book in the form of theory files. Exercises that do not require Isabelle
are omitted.

http://www.in.tum.de/~nipkow/Concrete-Semantics
http://www.in.tum.de/~nipkow/Concrete-Semantics

1

Chapter 2

Exercise 2.1. Use the value command to evaluate the following expressions:

"1 + (2::nat)" "1 + (2::int)" "1 − (2::nat)" "1 − (2::int)" "[a ,b] @ [c,d]"

Exercise 2.2. Recall the definition of our own addition function on nat :

fun add :: "nat ⇒ nat ⇒ nat" where
"add 0 n = n" |

"add (Suc m) n = Suc(add m n)"

Prove that add is associative and commutative. You will need additional lem-
mas.

lemma add_assoc: "add (add m n) p = add m (add n p)"
lemma add_comm : "add m n = add n m"

Define a recursive function

fun double :: "nat ⇒ nat"

and prove that

lemma double_add : "double m = add m m"

Exercise 2.3. Define a function that counts the number of occurrences of an
element in a list:

fun count :: " ′a list ⇒ ′a ⇒ nat"

Test your definition of count on some examples. Prove the following inequality:

theorem "count xs x 6 length xs"

Exercise 2.4. Define a function snoc that appends an element to the end of a
list. Do not use the existing append operator @ for lists.

fun snoc :: " ′a list ⇒ ′a ⇒ ′a list"

Convince yourself on some test cases that your definition of snoc behaves as
expected. With the help of snoc define a recursive function reverse that reverses
a list. Do not use the predefined function rev.

fun reverse :: " ′a list ⇒ ′a list"

Prove the following theorem. You will need an additional lemma.

theorem "reverse (reverse xs) = xs"

Exercise 2.5. The aim of this exercise is to prove the summation formula

n∑
i=0

i =
n(n+ 1)

2

Define a recursive function sum_upto n = 0 + ... + n :

2

fun sum_upto :: "nat ⇒ nat"

Now prove the summation formula by induction on n. First, write a clear but
informal proof by hand following the examples in the main text. Then prove
the same property in Isabelle:

lemma "sum_upto n = n ∗ (n+1) div 2"

Exercise 2.6. Starting from the type ′a tree defined in the text, define a
function that collects all values in a tree in a list, in any order, without removing
duplicates.

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

fun contents :: " ′a tree ⇒ ′a list"

Then define a function that sums up all values in a tree of natural numbers

fun sum_tree :: "nat tree ⇒ nat"

and prove

lemma "sum_tree t = sum_list(contents t)"

Exercise 2.7. Define a new type ′a tree2 of binary trees where values are
also stored in the leaves of the tree. Also reformulate the mirror function
accordingly. Define two functions

fun pre_order :: " ′a tree2 ⇒ ′a list"
fun post_order :: " ′a tree2 ⇒ ′a list"

that traverse a tree and collect all stored values in the respective order in a list.
Prove

lemma "pre_order (mirror t) = rev (post_order t)"

Exercise 2.8. Define a recursive function

fun intersperse :: " ′a ⇒ ′a list ⇒ ′a list"

such that intersperse a [x1, ..., xn] = [x1, a , x2, a , ..., a , xn]. Prove

lemma "map f (intersperse a xs) = intersperse (f a) (map f xs)"

Exercise 2.9. Write a tail-recursive variant of the add function on nat :

fun itadd :: "nat ⇒ nat ⇒ nat"

Tail-recursive means that in the recursive case, itadd needs to call itself directly:
itadd (Suc m) n = itadd Prove

lemma "itadd m n = add m n"

3

Exercise 2.10. Define a datatype tree0 of binary tree skeletons which do not
store any information, neither in the inner nodes nor in the leaves. Define a
function that counts the number of all nodes (inner nodes and leaves) in such
a tree:

fun nodes :: "tree0 ⇒ nat"

Consider the following recursive function:

fun explode :: "nat ⇒ tree0 ⇒ tree0" where
"explode 0 t = t" |

"explode (Suc n) t = explode n (Node t t)"

Experiment how explode influences the size of a binary tree and find an equation
expressing the size of a tree after exploding it (nodes (explode n t)) as a function
of nodes t and n. Prove your equation. You may use the usual arithmetic
operations including the exponentiation operator ^”. For example, 2 ^ 2 = 4.

Hint: simplifying with the list of theorems algebra_simps takes care of com-
mon algebraic properties of the arithmetic operators.

Exercise 2.11. Define arithmetic expressions in one variable over integers (type
int) as a data type:

datatype exp = Var | Const int | Add exp exp | Mult exp exp

Define a function eval that evaluates an expression at some value:

fun eval :: "exp ⇒ int ⇒ int"

For example, eval (Add (Mult (Const 2) Var) (Const 3)) i = 2 ∗ i + 3.
A polynomial can be represented as a list of coefficients, starting with the

constant. For example, [4, 2, − 1, 3] represents the polynomial 4+2x−x2+3x3.
Define a function evalp that evaluates a polynomial at a given value:

fun evalp :: "int list ⇒ int ⇒ int"

Define a function coeffs that transforms an expression into a polynomial. This
will require auxiliary functions.

fun coeffs :: "exp ⇒ int list"

Prove that coeffs preserves the value of the expression:

theorem evalp_coeffs : "evalp (coeffs e) x = eval e x"

Hint: consider the hint in Exercise 2.10.

4

Chapter 3

Exercise 3.1. To show that asimp_const really folds all subexpressions of the
form Plus (N i) (N j), define a function

fun optimal :: "aexp ⇒ bool"

that checks that its argument does not contain a subexpression of the form Plus
(N i) (N j). Then prove that the result of asimp_const is optimal:

lemma "optimal (asimp_const a)"

This proof needs the same split : directive as the correctness proof of asimp_const.
This increases the chance of nontermination of the simplifier. Therefore opti-
mal should be defined purely by pattern matching on the left-hand side, without
case expressions on the right-hand side.

Exercise 3.2. In this exercise we verify constant folding for aexp where we sum
up all constants, even if they are not next to each other. For example, Plus (N
1) (Plus (V x) (N 2)) becomes Plus (V x) (N 3). This goes beyond asimp.
Below we follow a particular solution strategy but there are many others.

First, define a function sumN that returns the sum of all constants in an
expression and a function zeroN that replaces all constants in an expression by
zeroes (they will be optimized away later):

fun sumN :: "aexp ⇒ int"
fun zeroN :: "aexp ⇒ aexp"

Next, define a function sepN that produces an arithmetic expression that adds
the results of sumN and zeroN. Prove that sepN preserves the value of an
expression.

definition sepN :: "aexp ⇒ aexp"
lemma aval_sepN : "aval (sepN t) s = aval t s"

Finally, define a function full_asimp that uses asimp to eliminate the zeroes
left over by sepN. Prove that it preserves the value of an arithmetic expression.

definition full_asimp :: "aexp ⇒ aexp"
lemma aval_full_asimp: "aval (full_asimp t) s = aval t s"

Exercise 3.3. Substitution is the process of replacing a variable by an expres-
sion in an expression. Define a substitution function

fun subst :: "vname ⇒ aexp ⇒ aexp ⇒ aexp"

such that subst x a e is the result of replacing every occurrence of variable x
by a in e. For example:

subst ′ ′x ′ ′ (N 3) (Plus (V ′ ′x ′ ′) (V ′ ′y ′ ′)) = Plus (N 3) (V ′ ′y ′ ′)

Prove the so-called substitution lemma that says that we can either sub-
stitute first and evaluate afterwards or evaluate with an updated state:

5

lemma subst_lemma : "aval (subst x a e) s = aval e (s(x := aval a s))"

As a consequence prove that we can substitute equal expressions by equal ex-
pressions and obtain the same result under evaluation:

lemma "aval a1 s = aval a2 s
=⇒ aval (subst x a1 e) s = aval (subst x a2 e) s"

Exercise 3.4. Take a copy of theory AExp and modify it as follows. Ex-
tend type aexp with a binary constructor Times that represents multiplica-
tion. Modify the definition of the functions aval and asimp accordingly. You
can remove asimp_const. Function asimp should eliminate 0 and 1 from mul-
tiplications as well as evaluate constant subterms. Update all proofs concerned.

Exercise 3.5. Define a datatype aexp2 of extended arithmetic expressions that
has, in addition to the constructors of aexp, a constructor for modelling a C-like
post-increment operation x++, where xmust be a variable. Define an evaluation
function aval2 :: aexp2 ⇒ state ⇒ val × state that returns both the value of
the expression and the new state. The latter is required because post-increment
changes the state.

Extend aexp2 and aval2 with a division operation. Model partiality of
division by changing the return type of aval2 to (val × state) option. In case
of division by 0 let aval2 return None. Division on int is the infix div.

Exercise 3.6. The following type adds a LET construct to arithmetic expres-
sions:

datatype lexp = Nl int | Vl vname | Plusl lexp lexp | LET vname lexp lexp

The LET constructor introduces a local variable: the value of LET x e1 e2

is the value of e2 in the state where x is bound to the value of e1 in the
original state. Define a function lval :: lexp ⇒ state ⇒ int that evaluates lexp
expressions. Remember s(x := i).

Define a conversion inline :: lexp ⇒ aexp. The expression LET x e1 e2 is
inlined by substituting the converted form of e1 for x in the converted form
of e2. See Exercise 3.3 for more on substitution. Prove that inline is correct
w.r.t. evaluation.

Exercise 3.7. Show that equality and less-or-equal tests on aexp are definable

definition Le :: "aexp ⇒ aexp ⇒ bexp"
definition Eq :: "aexp ⇒ aexp ⇒ bexp"

and prove that they do what they are supposed to:

lemma bval_Le : "bval (Le a1 a2) s = (aval a1 s 6 aval a2 s)"
lemma bval_Eq : "bval (Eq a1 a2) s = (aval a1 s = aval a2 s)"

Exercise 3.8. Consider an alternative type of boolean expressions featuring a
conditional:

6

datatype ifexp = Bc2 bool | If ifexp ifexp ifexp | Less2 aexp aexp

First define an evaluation function analogously to bval :

fun ifval :: "ifexp ⇒ state ⇒ bool"

Then define two translation functions

fun b2ifexp :: "bexp ⇒ ifexp"
fun if2bexp :: "ifexp ⇒ bexp"

and prove their correctness:

lemma "bval (if2bexp exp) s = ifval exp s"
lemma "ifval (b2ifexp exp) s = bval exp s"

Exercise 3.9. We define a new type of purely boolean expressions without any
arithmetic

datatype pbexp =

VAR vname | NOT pbexp | AND pbexp pbexp | OR pbexp pbexp

where variables range over values of type bool, as can be seen from the evaluation
function:

fun pbval :: "pbexp ⇒ (vname ⇒ bool) ⇒ bool" where
"pbval (VAR x) s = s x" |

"pbval (NOT b) s = (¬ pbval b s)" |

"pbval (AND b1 b2) s = (pbval b1 s ∧ pbval b2 s)" |

"pbval (OR b1 b2) s = (pbval b1 s ∨ pbval b2 s)"

Define a function that checks whether a boolean exression is in NNF (negation
normal form), i.e., if NOT is only applied directly to VARs:

fun is_nnf :: "pbexp ⇒ bool"

Now define a function that converts a bexp into NNF by pushing NOT inwards
as much as possible:

fun nnf :: "pbexp ⇒ pbexp"

Prove that nnf does what it is supposed to do:

lemma pbval_nnf : "pbval (nnf b) s = pbval b s"
lemma is_nnf_nnf : "is_nnf (nnf b)"

An expression is in DNF (disjunctive normal form) if it is in NNF and if no OR
occurs below an AND. Define a corresponding test:

fun is_dnf :: "pbexp ⇒ bool"

An NNF can be converted into a DNF in a bottom-up manner. The critical
case is the conversion of AND b1 b2. Having converted b1 and b2, apply
distributivity of AND over OR. If we write OR as a multi-argument function,
we can express the distributivity step as follows: dist_AND (OR a1 ... an)

(OR b1 ... bm) = OR (AND a1 b1) (AND a1 b2) ... (AND an bm). Define

7

fun dist_AND :: "pbexp ⇒ pbexp ⇒ pbexp"

and prove that it behaves as follows:

lemma pbval_dist : "pbval (dist_AND b1 b2) s = pbval (AND b1 b2) s"
lemma is_dnf_dist : "is_dnf b1 =⇒ is_dnf b2 =⇒ is_dnf (dist_AND b1 b2)"

Use dist_AND to write a function that converts an NNF to a DNF in the above
bottom-up manner.

fun dnf_of_nnf :: "pbexp ⇒ pbexp"

Prove the correctness of your function:

lemma "pbval (dnf_of_nnf b) s = pbval b s"
lemma "is_nnf b =⇒ is_dnf (dnf_of_nnf b)"

Exercise 3.10. A stack underflow occurs when executing an ADD instruc-
tion on a stack of size less than 2. In our semantics a term exec1 ADD s stk
where length stk < 2 is simply some unspecified value, not an error or excep-
tion — HOL does not have those concepts. Modify theory ASM such that
stack underflow is modelled by None and normal execution by Some, i.e., the
execution functions have return type stack option. Modify all theorems and
proofs accordingly. Hint: you may find split : option .split useful in your proofs.

Exercise 3.11. This exercise is about a register machine and compiler for aexp.
The machine instructions are

datatype instr = LDI val reg | LD vname reg | ADD reg reg

where type reg is a synonym for nat. Instruction LDI i r loads i into register
r, LD x r loads the value of x into register r, and ADD r1 r2 adds register r2
to register r1.

Define the execution of an instruction given a state and a register state; the
result is the new register state:

type_synonym rstate = "reg ⇒ val"

fun exec1 :: "instr ⇒ state ⇒ rstate ⇒ rstate"

Define the execution exec of a list of instructions as for the stack machine.
The compiler takes an arithmetic expression a and a register r and produces

a list of instructions whose execution places the value of a into r. The registers
> r should be used in a stack-like fashion for intermediate results, the ones <
r should be left alone. Define the compiler and prove it correct:

theorem "exec (comp a r) s rs r = aval a s"

Exercise 3.12. This exercise is a variation of the previous one with a different
instruction set:

datatype instr0 = LDI0 val | LD0 vname | MV0 reg | ADD0 reg

8

All instructions refer implicitly to register 0 as a source or target: LDI0 and
LD0 load a value into register 0, MV0 r copies the value in register 0 into
register r, and ADD0 r adds the value in register r to the value in register 0;
MV0 0 and ADD0 0 are legal. Define the execution functions

fun exec01 :: "instr0 ⇒ state ⇒ rstate ⇒ rstate"

and exec0 for instruction lists.
The compiler takes an arithmetic expression a and a register r and produces

a list of instructions whose execution places the value of a into register 0. The
registers > r should be used in a stack-like fashion for intermediate results, the
ones 6 r should be left alone (with the exception of 0). Define the compiler
and prove it correct:

theorem "exec0 (comp0 a r) s rs 0 = aval a s"

9

Chapter 4

Exercise 4.1. Start from the data type of binary trees defined earlier:

datatype ′a tree = Tip | Node " ′a tree" ′a " ′a tree"

An int tree is ordered if for every Node l i r in the tree, l and r are ordered
and all values in l are < i and all values in r are > i. Define a function that
returns the elements in a tree and one the tests if a tree is ordered:

fun set :: " ′a tree ⇒ ′a set"
fun ord :: "int tree ⇒ bool"

Hint: use quantifiers.
Define a function ins that inserts an element into an ordered int tree while

maintaining the order of the tree. If the element is already in the tree, the same
tree should be returned.

fun ins :: "int ⇒ int tree ⇒ int tree"

Prove correctness of ins :

lemma set_ins : "set(ins x t) = {x } ∪ set t"
theorem ord_ins : "ord t =⇒ ord(ins i t)"

Exercise 4.2. Formalize the following definition of palindromes

• The empty list and a singleton list are palindromes.

• If xs is a palindrome, so is a # xs @ [a].

as an inductive predicate

inductive palindrome :: " ′a list ⇒ bool"

and prove

lemma "palindrome xs =⇒ rev xs = xs"

Exercise 4.3. We could also have defined star as follows:

inductive star ′ :: "(′a ⇒ ′a ⇒ bool) ⇒ ′a ⇒ ′a ⇒ bool" for r where
refl ′: "star ′ r x x" |

step ′: "star ′ r x y =⇒ r y z =⇒ star ′ r x z"

The single r step is performer after rather than before the star ′ steps. Prove

lemma "star ′ r x y =⇒ star r x y"
lemma "star r x y =⇒ star ′ r x y"

You may need lemmas. Note that rule induction fails if the assumption about
the inductive predicate is not the first assumption.

Exercise 4.4. Analogous to star, give an inductive definition of the n-fold
iteration of a relation r : iter r n x y should hold if there are x0, . . . , xn such
that x = x0, xn = y and r x i x i+1 for all i < n :

10

inductive iter :: "(′a ⇒ ′a ⇒ bool) ⇒ nat ⇒ ′a ⇒ ′a ⇒ bool" for r where

Correct and prove the following claim:

lemma "star r x y =⇒ iter r n x y"

Exercise 4.5. A context-free grammar can be seen as an inductive definition
where each nonterminal A is an inductively defined predicate on lists of terminal
symbols: A(w) mans that w is in the language generated by A. For example,
the production S → aSb can be viewed as the implication S w =⇒ S (a #
w @ [b]) where a and b are terminal symbols, i.e., elements of some alphabet.
The alphabet can be defined as a datatype:

datatype alpha = a | b

If you think of a and b as (” and)”, the following two grammars both generate
strings of balanced parentheses (where ε is the empty word):

S → ε | aSb | SS

T → ε | TaTb

Define them as inductive predicates and prove their equivalence:

inductive S :: "alpha list ⇒ bool"
inductive T :: "alpha list ⇒ bool"
lemma TS : "T w =⇒ S w"
lemma ST : "S w =⇒ T w"
corollary SeqT : "S w ←→ T w"

Exercise 4.6. In Chapter 3 we defined a recursive evaluation function aval ::

aexp ⇒ state ⇒ val. Define an inductive evaluation predicate and prove that
it agrees with the recursive function:

inductive aval_rel :: "aexp ⇒ state ⇒ val ⇒ bool"
lemma aval_rel_aval : "aval_rel a s v =⇒ aval a s = v"
lemma aval_aval_rel : "aval a s = v =⇒ aval_rel a s v"
corollary "aval_rel a s v ←→ aval a s = v"

Exercise 4.7. Consider the stack machine from Chapter 3 and recall the con-
cept of stack underflow from Exercise 3.10. Define an inductive predicate

inductive ok :: "nat ⇒ instr list ⇒ nat ⇒ bool"

such that ok n is n ′ means that with any initial stack of length n the instruc-
tions is can be executed without stack underflow and that the final stack has
length n ′.

Using the introduction rules for ok, prove the following special cases:

lemma "ok 0 [LOAD x] (Suc 0)"
lemma "ok 0 [LOAD x , LOADI v , ADD] (Suc 0)"
lemma "ok (Suc (Suc 0)) [LOAD x , ADD , ADD , LOAD y] (Suc (Suc 0))"

11

Prove that ok correctly computes the final stack size:

lemma "[[ok n is n ′; length stk = n]] =⇒ length (exec is s stk) = n ′"

Lemma length_Suc_conv may come in handy.
Prove that instruction sequences generated by comp cannot cause stack

underflow: ok n (comp a) ? for some suitable value of ?.

12

Chapter 5

Exercise 5.1. Give a readable, structured proof of the following lemma:

lemma assumes T : "∀ x y . T x y ∨ T y x"
and A: "∀ x y . A x y ∧ A y x −→ x = y"
and TA: "∀ x y . T x y −→ A x y" and "A x y"
shows "T x y"

Each step should use at most one of the assumptions T, A or TA.

Exercise 5.2. Give a readable, structured proof of the following lemma:

lemma "(∃ ys zs . xs = ys @ zs ∧ length ys = length zs)
∨ (∃ ys zs . xs = ys @ zs ∧ length ys = length zs + 1)"

Hint: There are predefined functions take and const drop of type nat ⇒ ′a
list ⇒ ′a list such that take k [x1,. . .] = [x1,. . .,xk] and drop k [x1,. . .] =

[x k+1,. . .]. Let sledgehammer find and apply the relevant take and drop lemmas
for you.

Exercise 5.3. Give a structured proof by rule inversion:

lemma assumes a : "ev(Suc(Suc n))" shows "ev n"

Exercise 5.4. Give a structured proof by rule inversions:

lemma "¬ ev(Suc(Suc(Suc 0)))"

If there are no cases to be proved you can close a proof immediateley with qed.

Exercise 5.5. Recall predicate star from Section 4.5 and iter from Exercise 4.4.

lemma "iter r n x y =⇒ star r x y"

Prove this lemma in a structured style, do not just sledgehammer each case of
the required induction.

Exercise 5.6. Define a recursive function

fun elems :: " ′a list ⇒ ′a set"

that collects all elements of a list into a set. Prove

lemma "x ∈ elems xs =⇒ ∃ ys zs . xs = ys @ x # zs ∧ x /∈ elems ys"

Exercise 5.7. Extend Exercise 4.5 with a function that checks if some alpha list
is a balanced string of parentheses. More precisely, define a recursive function

fun balanced :: "nat ⇒ alpha list ⇒ bool"

such that balanced n w is true iff (informally) an @ w ∈ S. Formally, prove

corollary "balanced n w ←→ S (replicate n a @ w)"

where replicate :: nat ⇒ ′a ⇒ ′a list is predefined and replicate n x yields
the list [x , . . ., x] of length n.

13

Chapter 7

Exercise 7.1. Define a function that computes the set of variables that are
assigned to in a command:

fun assigned :: "com ⇒ vname set"

Prove that if some variable is not assigned to in a command, then that variable
is never modified by the command:

lemma "[[(c, s) ⇒ t ; x /∈ assigned c]] =⇒ s x = t x"

Exercise 7.2. Define a recursive function that determines if a command be-
haves like SKIP and prove its correctness:

fun skip :: "com ⇒ bool"
lemma "skip c =⇒ c ∼ SKIP"

Exercise 7.3. Define a recursive function

fun deskip :: "com ⇒ com"

that eliminates as many SKIPs as possible from a command. For example:

deskip (SKIP ;; WHILE b DO (x ::= a ;; SKIP)) = WHILE b DO x ::= a

Prove its correctness by induction on c:

lemma "deskip c ∼ c"

Remember lemma sim_while_cong for the WHILE case.

Exercise 7.4. A small-step semantics for the evaluation of arithmetic expres-
sions can be defined like this:

inductive astep :: "aexp × state ⇒ aexp ⇒ bool" (infix " " 50) where
"(V x , s) N (s x)" |

"(Plus (N i) (N j), s) N (i + j)" |

Complete the definition with two rules for Plus that model a left-to-right eval-
uation strategy: reduce the first argument with if possible, reduce the second
argument with if the first argument is a number. Prove that each step
preserves the value of the expression:

lemma "(a , s) a ′ =⇒ aval a s = aval a ′ s"
proof (induction rule : astep.induct [split_format (complete)])

Do not use the case idiom but write down explicitly what you assume and show
in each case: fix . . . assume . . . show

Exercise 7.5. Prove or disprove (by giving a counterexample):

lemma "IF And b1 b2 THEN c1 ELSE c2 ∼

IF b1 THEN IF b2 THEN c1 ELSE c2 ELSE c2"
lemma "WHILE And b1 b2 DO c ∼ WHILE b1 DO WHILE b2 DO c"

14

definition Or :: "bexp ⇒ bexp ⇒ bexp" where
"Or b1 b2 = Not (And (Not b1) (Not b2))"
lemma "WHILE Or b1 b2 DO c ∼

WHILE Or b1 b2 DO c;; WHILE b1 DO c"

Exercise 7.6. Define a new loop construct DO c WHILE b (where c is exe-
cuted once before b is tested) in terms of the existing constructs in com :

definition Do :: "com ⇒ bexp ⇒ com" ("DO _WHILE _" [0, 61] 61)

Define a translation on commands that replaces all WHILE b DO c by suitable
commands that use DO c WHILE b instead:

fun dewhile :: "com ⇒ com"

Prove that your translation preserves the semantics:

lemma "dewhile c ∼ c"

Exercise 7.7. Let C :: nat ⇒ com be an infinite sequence of commands and
S :: nat ⇒ state an infinite sequence of states such that C 0 = c;; d and
∀n . (C n , S n) → (C (Suc n), S (Suc n)). Then either all C n are of the
form cn;; d and it is always cn that is reduced or cn eventually becomes SKIP.
Prove

lemma assumes "C 0 = c;;d" and "∀n . (C n , S n) → (C (Suc n), S(Suc n))"
shows "(∀n . ∃ c1 c2. C n = c1;;d ∧ C (Suc n) = c2;;d ∧

(c1, S n) → (c2, S(Suc n)))
∨ (∃ k . C k = SKIP ;;d)"

For the following exercises copy theories Com, Big_Step and Small_Step
and modify them as required. Those parts of the theories that do not contribute
to the results required in the exercise can be discarded. If there are multiple
proofs of the same result, you may update any one of them.

Exercise 7.8. Extend IMP with a REPEAT c UNTIL b command by adding
the constructor

Repeat com bexp ("(REPEAT _/ UNTIL _)" [0, 61] 61)

to datatype com. Adjust the definitions of big-step and small-step semantics,
the proof that the big-step semantics is deterministic and the equivalence proof
between the two semantics.

Exercise 7.9. Extend IMP with a new command c1 OR c2 that is a nonde-
terministic choice: it may execute either c1 or c2. Add the constructor

Or com com ("_ OR/ _" [60, 61] 60)

to datatype com. Adjust the definitions of big-step and small-step semantics,
prove (c1 OR c2) ∼ (c2 OR c1) and update the equivalence proof between the
two semantics.

15

Exercise 7.10. Extend IMP with exceptions. Add two constructors THROW
and TRY c1 CATCH c2 to datatype com :

THROW | Try com com ("(TRY _/ CATCH _)" [0, 61] 61)

Command THROW throws an exception. The only command that can catch
an execption is TRY c1 CATCH c2: if an execption is thrown by c1, execution
continues with c2, otherwise c2 is ignored. Adjust the definitions of big-step
and small-step semantics as follows.

The big-step semantics is now of type com × state ⇒ com × state. In a
big step (c,s) ⇒ (x ,t), x can only be SKIP (signalling normal termination) or
THROW (signalling that an exception was thrown but not caught).

The small-step semantics is of the same type as before. There are two
final configurations now, (SKIP , t) and (THROW , t). Exceptions propagate
upwards until an enclosing handler is found. That is, until a configuration (TRY
THROW CATCH c, s) is reached and THROW can be caught.

Adjust the equivalence proof between the two semantics such that you obtain
cs ⇒ (SKIP ,t) ←→ cs →∗ (SKIP ,t) and cs ⇒ (THROW ,t) ←→ cs →∗
(THROW ,t). Also revise the proof of (∃ cs ′. cs ⇒ cs ′) ←→ (∃ cs ′. cs →∗
cs ′ ∧ final cs ′).

16

Chapter 8

For the following exercises copy and adjust theory Compiler. Intrepid readers
only should attempt to adjust theory Compiler2 too.

Exercise 8.1. A common programming idiom is IF b THEN c, i.e., the ELSE -
branch is a SKIP command. Look at how, for example, the command IF Less
(V ′ ′x ′ ′) (N 5) THEN ′ ′y ′ ′ ::= N 3 ELSE SKIP is compiled by ccomp and
identify a possible compiler optimization. Modify the definition of ccomp such
that it generates fewer instructions for commands of the form IF b THEN c
ELSE SKIP. Ideally the proof of theorem ccomp_bigstep should still work;
otherwise adapt it.

Exercise 8.2. Building on Exercise 7.8, extend the compiler ccomp and its
correctness theorem ccomp_bigstep to REPEAT loops. Hint: the recursion
pattern of the big-step semantics and the compiler for REPEAT should match.

Exercise 8.3. Modify the machine language such that instead of variable names
to values, the machine state maps addresses (integers) to values. Adjust the
compiler and its proof accordingly.

In the simple version of this exercise, assume the existence of a globally
bijective function addr_of with bij addr_of to adjust the compiler. Use the
find_theorems search to find applicable theorems for bijectivte functions.

For the more advanced version and a slightly larger project, only assume
that the function works on a finite set of variables: those that occur in the
program. For the other, unused variables, it should return a suitable default
address. In this version, you may want to split the work into two parts: first,
update the compiler and machine language, assuming the existence of such a
function and the (partial) inverse it provides. Second, separately construct this
function from the input program, having extracted the properties needed for it
in the first part. In the end, rearrange you theory file to combine both into a
final theorem.

Exercise 8.4. This is a slightly more challenging project. Based on Exer-
cise 8.3, and similarly to Exercise 3.11 and Exercise 3.12, define a second ma-
chine language that does not possess a built-in stack, but instead, in addition
to the program counter, a stack pointer register. Operations that previously
worked on the stack now work on memory, accessing locations based on the
stack pointer.

For instance, let (pc, s , sp) be a configuration of this new machine consisting
of program counter, store, and stack pointer. Then the configuration after an
ADD instruction is (pc + 1, s(sp + 1 := s (sp + 1) + s sp), sp + 1), that
is, ADD dereferences the memory at sp + 1 and sp, adds these two values and
stores them at sp + 1, updating the values on the stack. It also increases the
stack pointer by one to pop one value from the stack and leave the result at the
top of the stack. This means the stack grows downwards.

Modify the compiler from Exercise 8.3 to work on this new machine language.
Reformulate and reprove the easy direction of compiler correctness.

17

Hint: Let the stack start below 0, growing downwards, and use type nat for
addressing variable in LOAD and STORE instructions, so that it is clear by
type that these instructions do not interfere with the stack.

Hint: When the new machine pops a value from the stack, this now unused
value is left behind in the store. This means, even after executing a purely
arithmetic expression, the values in initial and final stores are not all equal.
But: they are equal above a given address. Define an abbreviation for this
concept and use it to express the intermediate correctness statements.

18

Chapter 9

Exercise 9.1. Reformulate the inductive predicates Γ ` a : τ, Γ ` b and
Γ ` c as three recursive functions

fun atype :: "tyenv ⇒ aexp ⇒ ty option"
fun bok :: "tyenv ⇒ bexp ⇒ bool"
fun cok :: "tyenv ⇒ com ⇒ bool"

and prove

lemma atyping_atype : "(Γ ` a : τ) = (atype Γ a = Some τ)"
lemma btyping_bok : "(Γ ` b) = bok Γ b"
lemma ctyping_cok : "(Γ ` c) = cok Γ c"

Exercise 9.2. Modify the evaluation and typing of aexp by allowing ints to be
coerced to reals with the predefined coercion function real_of_int :: int ⇒ real
where necessary. Now every aexp has a value. Define an evaluation function:

fun aval :: "aexp ⇒ state ⇒ val"

Similarly, every aexp has a type. Define a function that computes the type of
an aexp

fun atyp :: "tyenv ⇒ aexp ⇒ ty"

and prove that it computes the correct type:

lemma "Γ ` s =⇒ atyp Γ a = type (aval a s)"

Note that Isabelle inserts the coercion real automatically. For example, if you
write Rv (i + r) where i :: int and r :: real then it becomes Rv (real i + x).

For the following two exercises copy theory Types and modify it as required.

Exercise 9.3. Add a REPEAT loop (see Exercise 7.8) to the typed version of
IMP and update the type soundness proof.

Exercise 9.4. Modify the typed version of IMP as follows. Values are now
either integers or booleans. Thus variables can have boolean values too. Merge
the two expressions types aexp and bexp into one new type exp of expressions
that has the constructors of both types (of course without real constants). Com-
bine taval and tbval into one evaluation predicate eval :: exp ⇒ state ⇒ val
⇒ bool. Similarly combine the two typing predicates into one: Γ ` e : τ where
e :: exp and the IMP-type τ can be one of Ity or Bty. Adjust the small-step
semantics and the type soundness proof.

Exercise 9.5. Reformulate the inductive predicate sec_type as a recursive
function and prove the equivalence of the two formulations:

fun ok :: "level ⇒ com ⇒ bool"
theorem "(l ` c) = ok l c"

Try to reformulate the bottom-up system ` c : l as a function that computes l
from c. What difficulty do you face?

19

Exercise 9.6. Define a bottom-up termination insensitive security type system
` ′ c : l with subsumption rule:

inductive sec_type2 ′ :: "com ⇒ level ⇒ bool" ("(` ′ ′ _ : _)" [0,0] 50)

Prove equivalence with the bottom-up system ` c : l without subsumption rule:

lemma "` c : l =⇒ ` ′ c : l"
lemma "` ′ c : l =⇒ ∃ l ′ > l . ` c : l ′"

Exercise 9.7. Define a function that erases those parts of a command that
contain variables above some security level:

fun erase :: "level ⇒ com ⇒ com"

Function erase l should replace all assignments to variables with security level
> l by SKIP. It should also erase certain IF s and WHILEs, depending on the
security level of the boolean condition. Now show that c and erase l c behave
the same on the variables up to level l :

theorem "[[(c,s) ⇒ s ′; (erase l c,t) ⇒ t ′; 0 ` c; s = t (< l)]]

=⇒ s ′ = t ′ (< l)"

This theorem looks remarkably like the noninterference lemma from theory
Sec_Typing (although 6 has been replaced by <). You may want to start with
that proof and modify it. The structure should remain the same. You may also
need one or two simple additional lemmas.

In the theorem above we assume that both (c, s) and (erase l c, t) termi-
nate. How about the following two properties:

lemma "[[(c,s) ⇒ s ′; 0 ` c; s = t (< l)]]

=⇒ ∃ t ′. (erase l c, t) ⇒ t ′ ∧ s ′ = t ′ (< l)"

lemma "[[(erase l c,s) ⇒ s ′; 0 ` c; s = t (< l)]]

=⇒ ∃ t ′. (c,t) ⇒ t ′ ∧ s ′ = t ′ (< l)"

Give proofs or counterexamples.

20

Chapter 10

Exercise 10.1. Define the definite initialisation analysis as two recursive func-
tions

fun ivars :: "com ⇒ vname set"
fun ok :: "vname set ⇒ com ⇒ bool"

such that ivars computes the set of definitely initialised variables and ok checks
that only initialised variable are accessed. Prove

lemma "D A c A ′ =⇒ A ′ = A ∪ ivars c ∧ ok A c"
lemma "ok A c =⇒ D A c (A ∪ ivars c)"

notation Map.empty ("empty")

Exercise 10.2. Extend afold with simplifying addition of 0. That is, for any
expression e, e + 0 and 0 + e should be simplified to just e, including the case
where the 0 is produced by knowledge of the content of variables.

fun afold :: "aexp ⇒ tab ⇒ aexp"

Re-prove the results in this section with the extended version by copying and
adjusting the contents of theory Fold.

theorem "fold c Map.empty ∼ c"

notation Map.empty ("empty")

Exercise 10.3. Strengthen and re-prove the congruence rules for conditional
semantic equivalence to take the value of boolean expressions into account in
the IF and WHILE cases. As a reminder, the weaker rules are:

[[P |= b <∼> b ′; P |= c ∼ c ′; P |= d ∼ d ′]]

=⇒ P |= IF b THEN c ELSE d ∼ IF b ′ THEN c ′ ELSE d ′

[[P |= b <∼> b ′; P |= c ∼ c ′;
∧
s s ′. [[(c, s) ⇒ s ′; P s ; bval b s]] =⇒ P s ′]]

=⇒ P |= WHILE b DO c ∼ WHILE b ′ DO c ′

Find a formulation that takes b into account for equivalences about c or d.

Exercise 10.4. Extend constant folding with analysing boolean expressions
and eliminate dead IF branches as well as loops whose body is never executed.
Use the contents of theory Fold as a blueprint.

fun bfold :: "bexp ⇒ tab ⇒ bexp"
primrec bdefs :: "com ⇒ tab ⇒ tab"
primrec fold ′ :: "com ⇒ tab ⇒ com"

21

Hint: you will need to make use of stronger congruence rules for conditional
semantic equivalence.

lemma fold ′_equiv : "approx t |= c ∼ fold ′ c t"
theorem constant_folding_equiv ′: "fold ′ c Map.empty ∼ c"

notation Map.empty ("empty")

Exercise 10.5. This exercise builds infrastructure for Exercise 10.6, where we
will have to manipulate partial maps from variable names to variable names.

type_synonym tab = "vname ⇒ vname option"

In addition to the function merge from theory Fold, implement two functions
remove and remove_all that remove one variable name from the range of a
map, and a set of variable names from the domain and range of a map.

definition remove :: "vname ⇒ tab ⇒ tab"
definition remove_all :: "vname set ⇒ tab ⇒ tab"

Prove the following lemmas.

lemma "ran (remove x t) = ran t − {x }"
lemma "ran (remove_all S t) ⊆ −S"
lemma "dom (remove_all S t) ⊆ −S"
lemma "remove_all {x } (t (x := y)) = remove_all {x } t"
lemma "remove_all {x } (remove x t) = remove_all {x } t"
lemma "remove_all A (remove_all B t) = remove_all (A ∪ B) t"
lemma merge_remove_all :
assumes "remove_all S t1 = remove_all S t"
assumes "remove_all S t2 = remove_all S t"
shows "remove_all S (merge t1 t2) = remove_all S t"

Exercise 10.6. This is a more challenging exercise. Define and prove cor-
rect copy propagation. Copy propagation is similar to constant folding, but
propagates the right-hand side of assignments if these right-hand sides are just
variables. For instance, the program x := y; z := x + z will be transformed
into x := y; z := y + z. The assignment x := y can then be eliminated in
a liveness analysis. Copy propagation is useful for cleaning up after other opti-
misation phases.

To do this, take the definitions for constant folding from theory Fold and
adjust them to do copy propagation instead (without constant folding). Use
the functions from Exercise 10.5 in your definition. The general proof idea and
structure of constant folding remains applicable. Adjust it according to your
new definitions.

primrec copy :: "com ⇒ tab ⇒ com"
theorem "copy c Map.empty ∼ c"

22

Exercise 10.7. Prove the following termination-insensitive version of the cor-
rectness of L:

theorem "[[(c,s) ⇒ s ′; (c,t) ⇒ t ′; s = t on L c X]] =⇒ s ′ = t ′ on X"

Do not derive it as a corollary of the original correctness theorem but prove it
separately. Hint: modify the original proof.

Exercise 10.8. Find a command c such that bury (bury c {}) {} 6= bury c
{}. For an arbitrary command, can you put a limit on the amount of burying
needed until everything that is dead is also buried?

Exercise 10.9. Let lvars c / rvars c be the set of variables that occur on
the left-hand / right-hand side of an assignment in c. Let rvars c additionally
including those variables mentioned in the conditionals of IF andWHILE. Both
functions are predefined in theory Vars. Show the following two properties of
the small-step semantics. Variables that are not assigned to do not change their
value:

lemma "[[(c,s) →∗ (c ′,s ′); lvars c ∩ X = {}]] =⇒ s = s ′ on X"

The reduction behaviour of a command is only influenced by the variables read
by the command:

lemma "[[(c,s) →∗ (c ′,s ′); s = t on X ; rvars c ⊆ X]]

=⇒ ∃ t ′. (c,t) →∗ (c ′,t ′) ∧ s ′ = t ′ on X"

Hint: prove single step versions of the lemmas first.

Exercise 10.10. An available definitions analysis determines which previous
assignments x := a are valid equalities x = a at later program points. For
example, after x := y+1 the equality x = y+1 is available, but after x := y+1;
y := 2 the equality x = y+1 is no longer available. The motivation for the
analysis is that if x = a is available before v := a then v := a can be replaced
by v := x.

Define an available definitions analysis as a gen/kill analysis, for suitably
defined gen and kill (which may need to be mutually recursive):

fun gen :: "com ⇒ (vname ∗ aexp) set"
and "kill" :: "com ⇒ (vname ∗ aexp) set" where

definition AD :: "(vname ∗ aexp) set ⇒ com ⇒ (vname ∗ aexp) set" where
"AD A c = gen c ∪ (A − kill c)"

The defining equations for both gen and kill follow the where and are separated
by |” as usual.

A call AD A c should compute the available definitions after the execution
of c assuming that the definitions in A are available before the execution of c.

Prove correctness of the analysis:

theorem "[[(c,s) ⇒ s ′; ∀ (x ,a) ∈ A. s x = aval a s]]

=⇒ ∀ (x ,a) ∈ AD A c. s ′ x = aval a s ′"

23

Exercise 10.13. In the context of ordinary live variable analysis, elimination
of dead variables (bury) is not idempotent (Exercise 10.8). Now define the
textually identical function bury in the context of true liveness analysis (theory
Live_True) and prove that it is idempotent.

fun bury :: "com ⇒ vname set ⇒ com"

The following two tweaks improve proof automation:

declare L.simps(5)[simp]
lemmas L_mono2 = L_mono[unfolded mono_def]

To show that bury is idempotent we need a key lemma:

lemma L_bury : "X ⊆ Y =⇒ L (bury c Y) X = L c X"

The proof is straightforward except for the case While b c where reasoning
about lfp is required. Sledgehammer should help with the details.

Now we can prove idempotence of bury, again by induction on c:

theorem bury_idemp: "bury (bury c X) X = bury c X"

Due to lemma L_bury, even the While case should be easy.

24

Chapter 11

Exercise 11.1. Building on Exercise 7.8, extend the denotational semantics
and the equivalence proof with the big-step semantics with a REPEAT loop.

Exercise 11.2. Consider Example 11.14 and prove the following equation by
induction on n :

lemma "((W (λs . s ′ ′x ′ ′ 6= 0) ({(s ,t). t = s(′ ′x ′ ′ := s ′ ′x ′ ′ − 1)}))^^n) {} =
{(s ,t). 0 6 s ′ ′x ′ ′ & s ′ ′x ′ ′ < int n & t = s(′ ′x ′ ′ := 0)}"

Exercise 11.3. Consider Example 11.14 but with the loop condition b = Less
(N 0) (V ′ ′x ′ ′). Find a closed expression M (containing n) for f n {} and prove
f n {} = M.

Exercise 11.4. Define an operator B such that you can express the equation
for D (IF b THEN c1 ELSE c2) in a point free way.

definition B :: "bexp ⇒ (state × state) set"
lemma
"D (IF b THEN c1 ELSE c2) = (B b O D c1) ∪ (B (Not b) O D c2)"

Similarly, find a point free equation for W (bval b) dc and use it to write down
a point free version of D (WHILE b DO c) (still using lfp). Prove that your
equations are equivalent to the old ones.

Exercise 11.5. Let the ’thin’ part of a relation be its single-valued subset:

definition thin :: " ′a rel ⇒ ′a rel" where
"thin R = {(a ,b) . (a ,b) ∈ R ∧ (∀ c. (a ,c) ∈ R −→ c = b)}"

Prove

lemma fixes f :: " ′a rel ⇒ ′a rel"
assumes "mono f" and thin_f : "

∧
R. f (thin R) ⊆ thin (f R)"

shows "single_valued (lfp f)"

Exercise 11.6. Generalise our set-theoretic treatment of continuity and least
fixpoints to chain-complete partial orders (cpos), i.e. partial orders 6 that
have a least element ⊥ and where every chain c 0 6 c 1 6 . . . has a least upper
bound lub c where c :: nat ⇒ ′a. This setting is described by the following
type class cpo which is an extension of the type class order of partial orders.
For details see the decription of type classes in Chapter 13.

context order
begin
definition chain :: "(nat ⇒ ′a) ⇒ bool" where
"chain c = (∀n . c n 6 c (Suc n))"
end

25

class cpo = order +

fixes bot :: ′a and lub :: "(nat ⇒ ′a) ⇒ ′a"
assumes bot_least : "bot 6 x"
and lub_ub: "chain c =⇒ c n 6 lub c"
and lub_least : "chain c =⇒ (

∧
n . c n 6 u) =⇒ lub c 6 u"

A function f :: ′a ⇒ ′b between two cpos ′a and ′b is called continuous if
f (lub c) = lub (f ◦ c). Prove that if f is monotone and continuous then
lub (λn . (f ^^ n) ⊥) is the least (pre)fixpoint of f :

definition cont :: "(′a ::cpo ⇒ ′b::cpo) ⇒ bool" where
"cont f = (∀ c. chain c −→ f (lub c) = lub (f o c))"

abbreviation "fix f ≡ lub (λn . (f^^n) bot)"

lemma fix_lpfp: assumes "mono f" and "f p 6 p" shows "fix f 6 p"
theorem fix_fp: assumes "mono f" and "cont f" shows "f (fix f) = fix f"

Exercise 11.7. We define a dependency analysis Dep that maps commands
to relations between variables such that (x , y) ∈ Dep c means that in the
execution of c the initial value of x can influence the final value of y :

fun Dep :: "com ⇒ (vname ∗ vname) set" where
"Dep SKIP = Id" |

"Dep (x ::=a) = {(u ,v). if v = x then u ∈ vars a else u = v }" |

"Dep (c1;;c2) = Dep c1 O Dep c2" |

"Dep (IF b THEN c1 ELSE c2) = Dep c1 ∪ Dep c2 ∪ vars b × UNIV" |

"Dep (WHILE b DO c) = lfp(λR. Id ∪ vars b × UNIV ∪ Dep c O R)"

where × is the cross product of two sets. Prove monotonicity of the function
lfp is applied to.

For the correctness statement define

abbreviation Deps :: "com ⇒ vname set ⇒ vname set" where
"Deps c X ≡ (

⋃
x∈X . {y . (y ,x) : Dep c})"

and prove

lemma "[[(c,s) ⇒ s ′; (c,t) ⇒ t ′; s = t on Deps c X]] =⇒ s ′ = t ′ on X"

Give an example that the following stronger termination-sensitive property

[[(c, s) ⇒ s ′; s = t on Deps c X]] =⇒ ∃ t ′. (c, t) ⇒ t ′ ∧ s ′ = t ′ on X

does not hold. Hint: X = {}.
In the definition of Dep (IF b THEN c1 ELSE c2) the variables in b can

influence all variables (UNIV). However, if a variable is not assigned to in c1
and c2 it is not influenced by b (ignoring termination). Theory Vars defines a
function lvars such that lvars c is the set of variables on the left-hand side of
an assignment in c. Modify the definition of Dep as follows: replace UNIV by

26

lvars c1 ∪ lvars c2 (in the case IF b THEN c1 ELSE c2) and by lvars c (in
the caseWHILE b DO c). Adjust the proof of the above correctness statement.

27

Chapter 12

Exercise 12.2. Define bsubst and prove the Substitution Lemma:

fun bsubst :: "bexp ⇒ aexp ⇒ vname ⇒ bexp"
lemma bsubstitution : "bval (bsubst b a x) s = bval b (s [a/x])"

This may require a similar definition and proof for aexp.

Exercise 12.3. Define a command cmax that stores the maximum of the
values of the IMP variables x and y in the IMP variable z and prove that cmax
satisfies its specification:

abbreviation cmax :: com
lemma "` {λs . True} cmax {λs . s ′ ′z ′ ′ = max (s ′ ′x ′ ′) (s ′ ′y ′ ′)}"

Function max is the predefined maximum function. Proofs about max are
often automatic when simplifying with max_def.

Exercise 12.4. Define an equality operation for arithmetic expressions

definition Eq :: "aexp ⇒ aexp ⇒ bexp"

such that

lemma bval_Eq [simp]: "bval (Eq a1 a2) s = (aval a1 s = aval a2 s)"

Prove the following variant of the summation command correct:

lemma
"` {λs . s ′ ′x ′ ′ = i ∧ 0 6 i }

′ ′y ′ ′ ::= N 0;;
WHILE Not(Eq (V ′ ′x ′ ′) (N 0))

DO (′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (V ′ ′x ′ ′);;
′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (−1)))

{λs . s ′ ′y ′ ′ = sum i }"

Exercise 12.5. Prove that the following command computes y − x if 0 6 x :

lemma
"` {λs . s ′ ′x ′ ′ = x ∧ s ′ ′y ′ ′ = y ∧ 0 6 x }

WHILE Less (N 0) (V ′ ′x ′ ′)

DO (′ ′x ′ ′ ::= Plus (V ′ ′x ′ ′) (N (−1));; ′ ′y ′ ′ ::= Plus (V ′ ′y ′ ′) (N
(−1)))

{λt . t ′ ′y ′ ′ = y − x }"

Exercise 12.6. Define and verify a command cmult that stores the product of
x and y in z assuming 0 6 y :

abbreviation cmult :: com
lemma
"` {λs . s ′ ′x ′ ′ = x ∧ s ′ ′y ′ ′ = y ∧ 0 6 y} cmult {λt . t ′ ′z ′ ′ = x∗y}"

You may have to simplify with algebra_simps to deal with ∗”.

28

Exercise 12.7. The following command computes an integer approximation r
of the square root of i > 0, i.e. r2 6 i < (r+1)2. Prove

lemma
"` { λs . s ′ ′x ′ ′ = i ∧ 0 6 i }

′ ′r ′ ′ ::= N 0;; ′ ′r2 ′ ′ ::= N 1;;
WHILE (Not (Less (V ′ ′x ′ ′) (V ′ ′r2 ′ ′)))
DO (′ ′r ′ ′ ::= Plus (V ′ ′r ′ ′) (N 1);;

′ ′r2 ′ ′ ::= Plus (V ′ ′r2 ′ ′) (Plus (Plus (V ′ ′r ′ ′) (V ′ ′r ′ ′)) (N 1)))

{λs . (s ′ ′r ′ ′)^2 6 i ∧ i < (s ′ ′r ′ ′ + 1)^2}"

Figure out how r2 is related to r before formulating the invariant. The proof
may require simplification with algebra_simps and power2_eq_square.

Exercise 12.8. Prove by induction:

lemma "` {P } c {λs . True}"

Exercise 12.9. Design and prove correct a forward assignment rule of the form
` {P } x ::= a {?} where ? is some suitable postcondition that depends on P,
x and a. Hint: ? may need ∃ .

lemma "` {P } x ::= a {Questionmark }"

(In case you wonder if your Questionmark is strong enough: see Exercise 12.15)

Exercise 12.10. Prove

lemma " |= {P } c {Q} ←→ (∀ s . P s −→ wp c Q s)"

Exercise 12.11. Replace the assignment command with a new command Do f
where f :: state ⇒ state can be an arbitrary state transformer. Update the
big-step semantics, Hoare logic and the soundness and completeness proofs.

Exercise 12.12. Which of the following rules are correct? Proof or counterex-
ample!

lemma "[[` {P } c {Q}; ` {P ′} c {Q ′}]] =⇒
` {λs . P s ∨ P ′ s} c {λs . Q s ∨ Q ′ s}"

lemma "[[` {P } c {Q}; ` {P ′} c {Q ′}]] =⇒
` {λs . P s ∧ P ′ s} c {λs . Q s ∧ Q ′ s}"

lemma "[[` {P } c {Q}; ` {P ′} c {Q ′}]] =⇒
` {λs . P s −→ P ′ s} c {λs . Q s −→ Q ′ s}"

Exercise 12.13. Based on Exercise 7.9, extend Hoare logic and the soundness
and completeness proofs with nondeterministic choice.

Exercise 12.14. Based on Exercise 7.8, extend Hoare logic and the soundness
and completeness proofs with a REPEAT loop. Hint: think of REPEAT c
UNTIL b as equivalent to c;; WHILE Not b DO c.

29

Exercise 12.15. The dual of the weakest precondition is the strongest post-
condition sp. Define sp in analogy with wp via the big-step semantics:

definition sp :: "com ⇒ assn ⇒ assn"

Prove that sp really is the strongest postcondition:

lemma "(|= {P } c {Q}) ←→ (∀ s . sp c P s −→ Q s)"

In analogy with the derived equations for wp given in the text, give and prove
equations for calculating” sp for three constructs: sp (x ::= a) P = Q1, sp
(c1;; c2) P = Q2, and sp (IF b THEN c1 ELSE c2) P = Q3. The Qi must
not involve the semantics and may only call sp recursively on the subcommands
ci. Hint: Q1 requires an existential quantifier.

Exercise 12.16. Let asum i be the annotated command y := 0; W where W
is defined in Example 12.7. Prove

lemma "` {λs . s ′ ′x ′ ′ = i } strip(asum i) {λs . s ′ ′y ′ ′ = sum i }"

with the help of corollary vc_sound ′.

Exercise 12.17. Solve exercises 12.4 to 12.7 using the VCG: for every Hoare
triple ` {P } c {Q} from one of those exercises define an annotated version C of
c and prove ` {P } strip C {Q} with the help of corollary vc_sound ′.

Exercise 12.18. Having two separate functions pre and vc is inefficient. When
computing vc one often needs to compute pre too, leading to multiple traversals
of many subcommands. Define an optimised function

fun prevc :: "acom ⇒ assn ⇒ assn × bool"

that traverses the command only once. Prove

lemma "prevc C Q = (pre C Q , vc C Q)"

Exercise 12.19. Design a VCG that computes post rather than preconditions.
Start by solving Exercise 12.9. Now modify theory VCG as follows. Instead of
pre define a function

fun post :: "acom ⇒ assn ⇒ assn"

such that (with the execption of loops) post C P is the strongest postcondition
of C w.r.t. the precondition P (see also Exercise 12.15). Now modify vc such
that is uses post instead of pre and prove its soundness and completeness.

fun vc :: "acom ⇒ assn ⇒ bool"
lemma vc_sound : "vc C P =⇒ ` {P } strip C {post C P }"
lemma vc_complete : "` {P } c {Q}

=⇒ ∃C . strip C = c ∧ vc C P ∧ (∀ s . post C P s −→ Q s)"

Exercise 12.20. Prove total correctness of the commands in exercises 12.4 to
12.7.

30

Exercise 12.21. Modify the VCG to take termination into account. First
modify type acom by annotating WHILE with a measure function in addition
to an invariant:

Awhile assn "state ⇒ nat" bexp acom
("({_, _}/ WHILE _/ DO _)" [0, 0, 61] 61)

Functions strip and pre remain almost unchanged. The only significant change
is in the WHILE case for vc. Modify the old soundness proof to obtain

lemma vc_sound : "vc C Q =⇒ `t {pre C Q} strip C {Q}"

You may need the combined soundness and completeness of `t: (`t {P } c {Q})

= (|=t {P } c {Q})

Exercise 12.22. An alternative version of the WHILE rule indexes the invari-
ant by a natural number that must goes down by one with every iteration:

While :
"[[

∧
n ::nat . `t {P (Suc n)} c {P n};

∀n s . P (Suc n) s −→ bval b s ; ∀ s . P 0 s −→ ¬ bval b s]]

=⇒ `t {λs . ∃n . P n s} WHILE b DO c {P 0}" |

Prove soundness and completeness of this alternative set of rules. For the com-
pleteness proof it may be helpful to define a recursive function wpw :: bexp
⇒ com ⇒ nat ⇒ assn ⇒ assn such that wpw b c n Q is the weakest pre-
condition such that WHILE b DO c terminates after n iterations in a state
satisfying Q.

31

Chapter 13

Exercise 13.11. Take the Isabelle theories that define commands, big-step
semantics, annotated commands and the collecting semantics and extend them
with a nondeterministic choice construct. Start with Exercise 7.9 and extend
type com, then extend type acom with a corresponding construct:

Or "’a acom" "’a acom" ’a ("_ OR// _//_" [60, 61, 0] 60)

Finally extend function Step. Update proofs as well. Hint: think of OR as a
nondeterministic conditional without a test.

Exercise 13.12. Prove the following lemmas in a detailed and readable style:

lemma fixes x0 :: " ′a :: order"
assumes "

∧
x y . x 6 y =⇒ f x 6 f y" and "f q 6 q" and "x0 6 q"

shows "(f ^^ i) x0 6 q"

lemma fixes x0 :: " ′a :: order"
assumes "

∧
x y . x 6 y =⇒ f x 6 f y" and "x0 6 f x0"

shows "(f ^^ i) x0 6 (f ^^ (i+1)) x0"

Exercise 13.13. Let ′a be a complete lattice and let f :: ′a ⇒ ′a be a monotone
function. Give a readable proof that if P is a set of pre-fixpoints of f then

d

P is also a pre-fixpoint of f :

lemma fixes P :: " ′a ::complete_lattice set"
assumes "mono f" and "∀ p ∈ P . f p 6 p"
shows "f (

d
P) 6

d
P"

Sledgehammer should give you a proof you can start from.

Exercise 13.16. Give a readable proof that if γ :: ′a ::lattice ⇒ ′b::lattice is a
monotone function, then γ (a1 u a2) 6 γ a1 u γ a2:

lemma fixes γ :: " ′a ::lattice ⇒ ′b :: lattice"
assumes mono: "

∧
x y . x 6 y =⇒ γ x 6 γ y"

shows "γ (a1 u a2) 6 γ a1 u γ a2"

Give an example of two lattices and a monotone γ where γ a1 u γ a2 6 γ (a1

u a2) does not hold.

Exercise 13.17. Consider a simple sign analysis based on this abstract domain:

datatype sign = None | Neg | Pos0 | Any

fun γ :: "sign ⇒ val set" where
"γ None = {}" |

"γ Neg = {i . i < 0}" |

32

"γ Pos0 = {i . i > 0}" |

"γ Any = UNIV"

Define inverse analyses for +” and <” and prove the required correctness prop-
erties:

fun inv_plus ′ :: "sign ⇒ sign ⇒ sign ⇒ sign ∗ sign"
lemma
"[[inv_plus ′ a a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1; i2 ∈ γ a2; i1+i2 ∈ γ a]]

=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′ "
fun inv_less ′ :: "bool ⇒ sign ⇒ sign ⇒ sign ∗ sign"
lemma
"[[inv_less ′ bv a1 a2 = (a1 ′,a2 ′); i1 ∈ γ a1; i2 ∈ γ a2; (i1<i2) = bv]]

=⇒ i1 ∈ γ a1 ′ ∧ i2 ∈ γ a2 ′"

For the ambitious: turn the above fragment into a full-blown abstract in-
terpreter by replacing the interval analysis in theory Abs_Int2_ivl by a sign
analysis.

